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Abstract. The construction of integrity bases and invariant operators for the finite sub- 
groups of SO3 is outlined. The integrity bases are realized in terms of rotationally invariant 
sets of kets and the invariant operators in terms of irreducible tensorial sets. A building-up 
principle is developed for integrity bases and invariant operators and the latter used to 
complete the state labelling for the non-canonical subgroup chains. The invariant operators 
are applied to the symmetry adaption of Gel’fand states and to the study of coupling and 
transformation coefficients. 

1. Introduction 

A homogeneous polynomial PE(a) of degree m in the n variables a a2, . . . , a, is said 
to be an invariant of a group G if for all group transformations T ( g )  ( g  E G )  we have 

P x T ( g ) a ]  = P2a). 
A fundamental problem in the theory of invariants is to determine the minimal set 
PO[a] of invariant polynomials associated with a given group G in terms of which all 
other invariant polynomials may be generated. Such a minimal set of invariants is said 
(Weyll946) to constitute an integral rational basis or integrity basis. The integrity basis 
can be shown to be finite for any connected semi-simple compact Lie group (Judd et a1 
1974). 

The determination of the numbers and degrees of the invariant polynomials 
constituting the integrity basis goes back to the generating functions of Molien (1897). 
In the particular case of the proper rotation group SO3 we are initially interested in 
polynomials in the three spatial variables (x, y, z)  invariant under the action of a 
subgroup of SO3. The numbers and degrees of the invariant polynomials in (x, y, z) 
have been determined by Meyer (1 954) for all the crystallographic point groups and for 
the non-crystallographic icosahedral group. 

Explicit integrity bases for the crystallographic point groups have been given by 
Doring (1958), Doring and Simon (1960, 1961), Smith et a1 (1963, 1964) and Killing- 
beck (1972). McLellan (1974) has considered invariant polynomial functions of a 
symmetric second-order tensor while Kopsky (1975) has investigated Abelian crystal 
point groups. 

t Part of this work was submitted as partial fulfillment of the requirements for the BSc (Hons) degree at the 
University of Canterbury. 
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The choice of an integrity basis for a given group G is not unique. Different integrity 
bases are associated with the various subgroups H of G. Further, a given subgroup Hof 
G may often be embedded in G in several different ways giving rise to different integrity 
bases. In many cases there is value in constructing integrity bases symmetrized with 
respect to the various subgroups of a given group G. For example, we may construct 
integrity bases for the icosahedral group from those found for the subgroups D5, T 3 D2 
or T z C 3 .  

The representations D") of SO, are generally reducible upon restriction to a finite 
rotation group G. The reduction of the representation D"' is often not multiplicity 
free. For example, under the restriction SO3 + T we have for J = 6 (Koster etal 1963) 

In these cases the eigenvalues J(J+ 1) of the Casimir invariant J 2  of SO3 together with 
the representation labels r, of the tetrahedral group T do not supply a sufficient set of 
labels to distinguish states belonging to repeated representations of T. Following an 
argument due to Racah (1964) it is apparent that we are missing one labelling operator, 
say X. The Hermitian operator X may be constructed as a polynomial in the three 
generators J+, J, of the enveloping algebra of SO3 that is invariant under the relevant 
finite subgroup G of SO,. This operator, while not a scalar with respect to SO3, will 
necessarily commute with the Casimir invariant J 2  of SO3. The eigenvalues of the 
invariant operator X can be used to supply the missing label and thus systematically 
distinguish the non-multiplicity free reductions. 

The construction of invariant operators is closely related to that of constructing the 
integrity basis of the corresponding group. The invariant operators associated with a 
group G will be homogeneous polynomials in the group generators J*, J, and may be 
constructed so as to be associated with a particular representation D'J' of SO3 and will 
be designated as X';' with J being a non-negative integer. In this case invariant 
polynomials of degree J can be placed in one to one correspondence with the invariant 
operators k;'. However, due to the noncommutability of the group generators the 
minimal set of invariant operators will generally be smaller than that of the integrity 
basis of invariant polynomials. Indeed in our case the entire set of invariant operators 
can always be generated by J' and any two of the invariant operators, say X'il' and x'2'. 

Considerable advantages accrue in representing the integrity bases in terms of 
functions that transform under rotations like spherical harmonics and the operators in 
terms of spherical tensor operators. The relationship between the invariant functions 
and invariant operators becomes very close and leads to considerable simplifications. 

In this paper we first realize a set of kets ( k q )  in terms of homogeneous polynomials 
of degree k in the variables x J r ,  z / r  where 

1 
x i  = 'F&x *iy). 

These kets are constructed from the elementary kets ]lo), ( I  f 1) by a building-up 
process based on standard angular momentum coupling theory (Butler 1975). Next a 
set of irreducible tensor operators pJ'(J) are realized in terms of polynomials in J,, J, 
and constructed by an analogous building-up process. The commutation and coupling 
properties of these operators are then developed and the expressions for the tensor 
operator matrix elements in the angular momentum basis IJM) given. 



State labelling problem for subgroups of SO3 1053 

A building-up principle for integrity bases and irivariant operators is formulated to 
permit the systematic generation of higher-order invariant kets or operators from the 
lowest-order non-trivial invariant ket or operator. This systematic method is applied 
first to the cyclic and dihedral groups and then successively to the tetrahedral, 
octahedral and icosahedral groups paying special attention in these latter cases to the 
relevant subgroup structures. 

The application of the invariant operators to the solution of the state labelling 
problem is illustrated by an example. The invariant operators can play an important 
role in the construction of symmetry adapted states. Particular application is given here 
to the symmetry adaption of Gel’fand states (Gel’fand and Tsetlin 1950a, b) making 
contact with recent work on the use of Gel’fand states in atomic (Patera 1972, Harter 
1973, Drake et a1 1975) and molecular (Paldus 1975) physics. 

Diagonalization of the invariant operators 2;) in an angular momentum basis IJM) 
yields a symmetry adapted basis and the elements of the diagonalizing matrix are the 
transformation coefficients (Butler 1975) that take us from one basis into another. This 
leads us finally to discuss some of the properties of coupling coefficients and transforma- 
tion coefficients and their systematic computation. The extension of the methods 
outlined in this paper for SO3 and its subgroups to the other group structures is briefly 
considered. 

2. Angular momentum basis states 

The angular momentum operators J ,  and J, define the enveloping algebra of the group 
SO3. The kets Ikq) where k is a non-negative integer and q = - k, - k + 1 ,  . . . , k will 
form a rotationally invariant set if (Edmonds 1957) 

Jzlkq) = qlkq); J+I kq)  = [ k (  k + 1 )  - q(q * l ) ]  1 / 2 (  kq i 1 ) .  ( 1 )  
A pair of kets Ik lq l ) ,  Ik2q2) may be coupled together to form coupled kets ( k q )  by 
writing 

and conversely 

l ( k l k 2 ) k q ) =  C ( - 1 ) k l - k 2 + 4 ( 2 k + 1 ) 1 / 2 ( k 1  k 2  
4142 41 q2 - 4  

These two relations permit the systematic construction of arbitrary kets from the 
elementary kets / l o ) ,  ( 1  * 1). 

The operators J*, J, may be realized in terms of ( x ,  y ,  2) by writing 

The elementary kets then have the realization 

I lO)=z / r  I 1 * 1 ) = x J r .  (5) 

/ k *  k ) = x : / r k ,  (6 )  

It follows from (3) that the simplest rank k kets are the kth order stretched kets 
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An arbitrary kth order ket Ikq) can be generated either by systematic application of the 
raising or lowering operators J, to Ik f k )  as defined in (6) or by a building-up principle 
based on ( 5 )  and (3). Hence every ket Ikq) can be realized as a polynomial in (x, y, z ) .  
The normalization of kets is fixed by the choice made in ( 5 ) .  We note that 

( 7 )  I kq)* = (-  1)‘Ik - 4) .  

We shall see shortly that the kets Ikq) play a fundamental role in constructing integrity 
bases for finite subgroups of SO3. 

3. Irreducible tensorial sets 

An irreducible spherical tensorial set T(’) has 2k + 1 members 714”’ with q = - k, 
- k + 1, . . . , k which satisfy the commutation relations 

[J,, e’] = qp:’; [.I*, Tbk’]=[k(k+1)-q(qf1)]1/2Tbk~1. (8) 
Comparison of (1) and (8) shows the well known similarity of kets and operators. 

The operators, like the kets, admit various realizations. For our purposes we realize the 
tensor operators in terms of polynomials in J,, J,. These operators will automatically be 
diagonal in the eigenvalues of 5’. 

The elementary tensor operators are defined as 

1 T‘y = J, Pi! = F J ~ J +  (91, (10) 

and we readily find that we may realize 

25:: = (1 1) 
An arbitrary tensor operator component e’ can be constructed as a polynomial in 

the angular momentum operators by application of the raising or lowering operators to 
(1 1 )  via (8). Alternatively, we may make use of the building up principle via 

~ ‘ ) ~ ’ = ~ ( - l ) k ’ - k 2 + 4 ( 2 k + 1 ) l / 2 k k 1  k2 k )[T(k,)T(k,)]y) 
kq .41 q2 -9 

where (Schwinger 1952, see also Biedenharn and Van Dam 1965) 

(Jll[ T‘ ) T‘kz’]‘k’llJ) k )  Tb [T(kl)T(k,)]p = 
(JIIT‘k’llJ) 

and (Judd 1963) 

(Jll[T‘””T‘k2”]‘k’l(J) = (-  1)2’+k(2k + l)l/’{ 7 
The reduced matrix elements are given by (Buckmaster et a1 1972) 

~ ] ( J ~ ~ ~ k l ’ ~ ~ ~ ( ~ ~ ~ ~ ~ ) ~ ~ ~ ) .  

(2J+  k + l ) !  
(JllT‘k’llJ) = k ! (  

It is important to note that (13)js J-dependent as indeed noted by Schwinger (1952) .  
The exception is where k = k ,  + k 2 ,  then 

( 1 6 )  [T(kl)T(k)]~,+k,) E p;,+w 
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The polynomial expansions in J,, J, for e’ with k = 0 to 7 have been given by 
Buckmaster er a1 (1972). In actual practice the detailed expansions are of little interest 
since the matrix elements of e’ can be readily evaluated using the Wigner-Eckart 
theorem (Judd 1963) giving in this case 

The operators p:’ do not in general commute, rather (Schwinger 1952, see also 
Biedenharn and Van Dam 1965) 

4. Building-up principle for integrity bases and invariant operators 

The properties of integrity bases are closely related to those of coupling transformation 
coefficients. A basis ket that is invariant under a subgroup G of SO3 may be designated 
as /Jar1)  where rl is the identity representation of G and a is a multiplicity label for 
those cases where rl occurs more than once in the reduction SO3 + G. These invariant 
kets may be formally expanded in terms of the standard angular momentum kets IJM) 
by writing 

t~ar~)=  c i J w ( J M i J a r , )  (19) 
M 

where the coefficients of the expansion are transformation coefficients that couple the 
two bases (Kaplan 1962a, b, Moshinsky and Devi 1969). 

An invariant ket I J d J  can be constructed from other invariant kets, say l J la l~ l )  
and (Jzazrl), by noting that 

c ( J M I J ~  r ( ~ a  r1 a r ; ~~~~r ) 
U 

The right-hand side of (20) involves the transformation coefficients used to construct 
the kets JJ1alrl) and (J2a2rl)  and angular momentum Clebsch-Gordan coefficients 
(Rotenberg et a1 1959). The left-hand side of (20) involves a coupling coefficient for 
SO3 =I G and the desired transformation coefficient for use in (19). The properties and 
calculation of the relevant coupling coefficients have been considered elsewhere 
(Butler 1975, Butler and Wybourne 1976a, b). We follow the notation of Butler 
(1975). 

Equation (20) may be usefully rewritten in terms of the more symmetrical ljm and 
3jm symbols (Butler 1975) to give 

where M = M I  + M 2 .  
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The above results give an alternative approach to the usual integrity basis construc- 
tions and are particularly useful for calculating the higher-order invariants for the cubic 
and icosahedral groups. In these cases we can systematically construct higher-order 
invariant symmetrized kets from lower-order invariant kets. 

It is commonly stated that any polynomial invariant of a group G can be expressed 
as a polynomial in the integrity basis but the actual procedure for resolving a given 
polynomial invariant into that of the integrity basis is usually avoided. Similar remarks 
hold for the converse problem of resolving an arbitrary polynomial in the integrity basis 
into independent polynomial invariants of fixed orders. Both problems are amenable to 
a systematic, though often tedious, solution starting with equations such as (18) to (21). 
Specific examples will be given when we come to discuss the octahedral group. 

The transformation properties of basis functions and operators are closely related 
(Judd 1963, Butler 1975) and the building-up process can be carried over to invariant 
operators directly with the one important difference that the resolution of the product 
of two operators is normally J-dependent as a consequence of (13). This is of little 
consequence provided we work within a fixed J-manifold. 

5. Integrity bases for the cyclic and dihedral groups 

The cyclic groups C, are Abelian and involve n pure rotations about an n-fold axis. We 
shall choose this axis as the z axis. The dihedral groups D, are formed from C, by 
adding a 2-fold rotation perpendicular to the z axis to give a group containing 2n 
elements. We seek integrity bases where each member of a given set can be associated 
with a particular J value associated with the SO3 Casimir invariant J 2 .  We further 
demand that our invariants be Hermitian. 

The invariants for a given group C, may be constructed for the IJM) kets by standard 
application of the rotation operators of C, to the kets (Bradley and Cracknell 1972, 
Buckmaster et a1 1972). The integrity basis for a given C,(n > 1) involves just four 
members and may be chosen as 

(22) C, : 
where 

loo>, IlO), (Inn)+(-l)"ln - a)), i[lnn>-(-l)"ln - n)I 

x'+ y L + z L  
r2  

= 1.  100) = 

The special case of C1 is covered by deleting the first member in (22). The integrity 
bases for the dihedral groups D, each involve four members which we may choose as 
(n 2 2) 

D, : loo), 120), ( I n n > + ( - l ) " l n - n ) ) ; i [ l n + l n ) - ( -  t)"ln+1-n)]. (24) 
It is a simple matter to see that if the above kets are realized in terms of polynomials in 
(x, y, z )  as in 0 2 then all the polynomial invariants for C, and D, can be expressed as 
polynomials in the polynomial invariants of (22) and (24) respectively. 

Alternative integrity basis for C, and D, can be defined by taking suitable linearly 
independent combinations of the members of a given integrity basis. Our bases differ 
from those of Killingbeck (1972) due to our requirement that each member of the set 
transforms under SO3 according to a particular J value. An inconsistency in Killing- 
beck's bases for C3 and D3 is noted. 
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6. Invariant operators for the cyclic and dihedral groups 

The construction of invariant operators for the cyclic and dihedral groups follow 
immediately from recognizing the similarity under transformations of kets and 
operators. Indeed we need simply note the correspondence (Judd 1963) 

where the c' are here realized in terms of polynomials in the generators J,, J, of SO3 
to give for 

and for 

where 

However, there is an important difference, the operators c' generally do not 
commute. The commutator of two invariants is itself an invariant and hence all four 
members of the set of invariant operators associated with a given group are not 
independent. The minimal set of invariant operators may always be chosen as consist- 
ing of ?":' and any two of the remaining invariant operators. This set of three 
independent invariant operators suffice to generate all other invariant operators. 
Clearly ?":) commutes with all other invariant operators. 

7. Integrity bases and invariant operators for the tetrahedral group 

The tetrahedral group T is made up of the pure rotations of the tetrahedron. The 
groups D2 and C3 occur as subgroups of T and permit the construction of two distinct 
groupsubgroup bases according to T 2 D2 or T 2 C3. It follows from Meyer (1954), or 
simple character theory, that the invariant polynomials occuring in both integrity bases 
are of degree 0, 3, 4 and 6. The third-order invariant of D2 is also a third-order 
invariant for T since upon restriction from J = 3 of SO3 both groups yield the identity 
representation just once. This is not the case for T 3 C3. 

An integrity basis for T 3 C3 may be obtained from one for T 3 D2 by a rotation 
through 77/4 about the z axis followed by a rotation through p = cosp1( 1/J3)  about the 
new y axis. This amounts to shifting the z axis from the [OOl]  direction to the [lll] 
direction (Watanabe 1966). The groups C3 and D2 may be embedded in the tetrahedral 
group T in different ways, each giving rise to a different integrity basis. These different 
embeddings amount to different choices of axes and usually do no more than change the 
signs associated with the invariants of degree 3, 4 and 6 (cf Abragam and Bleaney 
1970). 
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The rotation properties of the angular momentum kets IJM) of degree 3, 4 and 6 
readily yield the integrity bases as 

JEl 
T 3 DZ: loo), $132)- 13 - 2)], 140) ++/44) + 14 -4)], 

where in (29) the z axis is in the [OOl]  direction and in (30) the [l 111 direction. 
The J = 6 representation of SO3 yields the identity representation rl of T twice and 

thus there are two sixth-order invariants for T. However, one sixth-order invariant can 
always be formed from the square of the third-order invariant of T. In detail we have 
for T 3 D2 the additional sixth-order invariant: 

J14 
T 3  D2: 160) - 2 ( ( 6 4 )  + 16 -4)) 

and for T 3 C3 the additional sixth-order invariant 

T 3 C 3 :  (60)+%(/63)-16-3))+,(166)+(6-6)). 4/23 1 

The invariant operators have exactly the same form as in (29) to (32) once the 
correspondence (25) is used. The eigenvalues and degeneracies of these operators are 
invariant with respect to changes in the relative signs that occur upon rotation to 
another set of equivalent axes, however the associated eigenvectors may be quite 
different. 

8. Integrity bases and invariant operators for the octahedral group 

The octahedral group 0 is made up of the pure rotations of the octahedron and contains 
the tetrahedral group T and the dihedral group D4 as important subgroups. The 
integrity basis for 0 involves invariant polynomials of degree 0, 4, 6 and 9 (Meyer 
1954). 

The fourth- and sixth-order invariants of T given in (29) and (31) and in (30) and 
(32) for T 3 D2 and T 3 C3 respectively are also invariants under 0. The third- and 
sixth-order invariants of T given in (29) and (30) for T 3 D2 and T 2 C3 respectively, 
transform under 0 as the r2 representation. Since T2 x r2 = rl the products of these 
third- and sixth-order invariants for T must yield invariants under 0. The d9) 
representation of SO3, upon restriction to 0, yields the identity representation rl just 
once and hence the ninth-order invariant may be built up via the methods of 0 4 either 
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by a coupling of the third- and sixth-order invariants of T o r  by a coupling of the fourth- 
and sixth-order invariants of 0. These lower-order invariants fix the unnormalized 
transformation coefficients required for the right-hand side of (20) or (21). The l j m  
and 3jm symbols on the left-hand side of (21) can be absorbed in the normalization of 
the ninth-order invariant. Proceeding in this way we obtain the invariants associated 
with the integrity basis for the octahedral group: 

9. Integrity bases and invariant operators for the icosahedral group 

The icosahedral group I is made up of the pure rotations of the icosahedron and is a 
non-crystallographic group. Nevertheless the icosahedral group finds important appli- 
cations as an exact symmetry group for certain polyborane molecules (Muetterties and 
Knoth 1968) and as an approximate symmetry group for the rare earth double nitrates 
(Judd 1957, McLellan 1961, Tinsley 1963 and Devine 1967). 

The integrity basis for I involves invariant polynomials of degree 0, 6, 10 and 15 
(Meyer 1954). The z axis of the icosahedron may be chosen in many different ways 
(Cohen 1958). Choosing the z axis as a 5-fold axis corresponds to the groupsubgroup 
scheme 1 3  D5. The choice of the z axis as a 2-fold or 3-fold axis corresponds to the 
groupsubgroup schemes I 3  D2 and I 2  C3 respectively. Furthermore, the tetrahedral 
group occurs as a physically important subgroup (Devine 1967) giving rise to the 
groupsubgroup chains I IT 3 D2 and I 1  T 2 C3. 

It suffices to construct the sixth-order invariants as the tenth- and fifteenth-order 
invariants can then be constructed via the building-up principle. The sixth-order 
icosahedral invariants must involve linear combinations of the sixth-order invariants 
associated with the relevant subgroups. Thus we have for 

12D5: 16O)+ix(165)+(6-5)) (35)  
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160)+y(163)-/6-3))+g(166)+16-6)) f i  
24 

Jiio 
+iz( ((63) + 16 - 3)) - t ( ( 6 6 )  - 16 - 6))) (37) 

The numbers x, y, z remain to be determined. These numbers can be determined by 
demanding that the relevant linear combination remains invariant under any rotation 
that belongs to I but not to the relevant subgroups of I. The phases associated with these 
numbers will depend on the directions of the x and y axes relative to the icosahedron 
(Judd 1957, Boyle and Ozgo 1973, Boyle and Schaffer 1974). Of course this ambiguity 
of sign has no physical consequences provided the choice is made and then applied 
consistently throughout all practical calculations. Mixing of phase conventions is not 
permissible. 

An alternative and much simpler approach for determining the relevant linear 
combinations is to diagonalize the operator eigenvalents for (35), (36) and (37) for the 
basis states 13M) and demand that the numbers x, y, or z be chosen so as to yield just two 
distinct eigenvalues one of degeneracy three and one of degeneracy four in accord with 
the branching rule D(3)+ U +  V for SO3 + I (Griffith 1961). For example in the case of 
(35) we find the three 2-fold degenerate eigenvalues 

2 2 5 f i  -- 7 5 f i *  54 1 5 ( 2 +  44 1 8 ~ ~ )  ’ 77 

and the singly degenerate eigenvalue 

- 3 0 d 2 3  1/77. 

There are two ways of combining these to obtain icosahedral degeneracy. These yield 

x = * f i / l l .  

In an exactly similar manner we find that 

z = * 3 f i / 8 .  

The construction of the tenth- and fifteenth-order invariants from the sixth-order 
invariants is a straightforward application of the building-up principle. The tenth- 
order invariant is first formed from the coupled product of the sixth-order invariant with 
itself. The fifteenth-order invariant then follows from a coupling of the tenth- and 
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sixth-order invariants. Here we give just the result for the tenth-order invariant for 
12,s 

In these latter calculations the extensive tabulation of 3jm symbols by Bryant (1960) is 
most useful. 

10. Application to the state labelling problem 

The invariant operators derived from the integrity basis for SO3 2 G, where G is a finite 
rotation group, allow us to form complete sets of commuting operators which yield a 
solution of the state labelling problem with orthonormal eigenfunctions. Just two 
operators are required to form the set of commutingoperators. It is natural to choose J 2  
as one member of the set. The second member of the set may be taken as any one of the 
remaining invariant operators, say x'$ transforming as the D") irreducible representa- 
tion (irrep) of SO3 or any suitable polynomial, say XG, in J2  and the various X(A) 
associated with the subgroup chain of interest. The actual choice of XG will depend on 
physical and computational considerations and must be such that the branching 
multiplicities associated with SO3 + G are fully resolved. Thus for SO3 2 D2 the choice 
of x':: would be unsuitable as x':: is also an invariant of the tetrahedral group T. If X i s  
chosen as a real symmetric operator complex conjugate irreps of G will be undis- 
tinguished. 

Eigenfunctions that simultaneously diagonalize the set of commuting operators 
{ J 2 ,  XG} may be found by diagonalizing XG in an SO3 3 SO2 angular momentum basis 
( J M ) .  Clearly to each { J 2 ,  XG}  there will correspond a unique set of basis functions 

where A is an eigenvalue of XG that serves to distinguish repetitions of the r irrep of G. 
In practice the y labels could be obtained from the finite subgroups of G. The 
coefficients (JMIJATy) are transformation coeficients that take us from the SO3 3 SO2 
basis to the SO3 3 G basis. 

Let us consider the reduction of the D(2) irrep of SO3 under SO3 -+ D2 where (Koster 
et a1 1963) 

D(*)+ 2r, +r, +r, +r, (43) 

and we choose to simultaneously diagonalize the set of commuting operators {J2 ,  x',':} 
where 

x'g = 7y + Ti': = $(J: + 31). (44) 

If x'gi is diagonalized in a JM basis with J =  2 we obtain the eigenvalues and 
eigenvectors shown in table 1. The transformation properties of the eigenvectors are 
readily deduced from standard projection operator techniques. We note here the two 
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Table 1. Eigenvalues and eigenvectors of x'ii in an angular momentum basis for J = 2. 
~ ~ ~ 

Eigenvalue Eigenvector 

I'l irreps are distinguished, one is associated with the A = + 243 eigenvalue of k$ and 
the other with A = -2J3. We make frequent use of the abbreviation 

(45) 
1 

IJW* = z(IJM) * I J -  M)). 

The basis functions obtained in table 1 are closely related to those of the asymmetri- 
cal top which arise when the operator (Patera and Winternitz 1973) 

E =4(L;+rL;) O < r < l  

= 2( 1 - r )kzi  + ~ ( 3 ~  - J&r + I)  (46) 
is diagonalized in the IJM) basis. 

The reduction of SO3 + T+ D2 for the D'6' irrep of SO3 provides an interesting 
example of the labelling problem. We consider the two sets of commuting operators 
{J2 ,  $;)} and {J2 ,  x',"'} where x'!' and $,"' are the rank 3 and 4 operators derived from 
(29). Under SO3 + T we have 

@-+ 2 r ,  + r2 + r3 + 3r,. (47) 
Diagonalization of k!) for the IJM) states where J = 6 yields the eigenvalues 

d330 124935 
A = *6& (I), *-ij-(l), *F (3), O(3) 

while x';) yields the eigenvalues 1 2 A f i / 7  with 

A =66(1), - 126(1), 114(2), -96(3), 20*44J41(3) (49) 

where the eigenvalue degeneracies are given in brackets. 
The eigenvalues associated with x'," completely distinguish all the irreps of T 

contained in (47). The associated eigenvectors are given in table 2. We note that the 
diagonalization of x'," yields a complex angular momentum basis and the eigenvalues A 
of x':' completes the labelling of the states. The eigenvalues associated with the 
complex conjugate irreps r2 and r3 of T differ in sign. 

Diagonalization of y;) yields a real angular momentum basis and the eigenvalues 
associated with T2 and r3 are identical as expected for a real basis. The eigenvalues of 
k,"', unlike those found for x'!), are not all pure irrational. This results in the 
associated eigenvectors assuming a rather complicated form. The bases obtained from 
the two pairs of commuting operators {f, x',"'} and { J 2 ,  X',"} are quite different. Either 
set of operators would yield an adequate set of labelled basis functions. 
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Table 2. Eigenvectors that simultaneously diagonalize {J’, X!!)}. 

A Eigenvector in JM basis 

0 

85 
f 12- f i  

30 *= 
Ji 1 

* 6& 

1 
-(9166)- + &162)-) Jc36 

1 
=(J6165) +Jii161)) 
417 

1 
-4616 -5)+:E16 - 1)) f i  

1 
?( -&166)- f iJi%)64)- + 9162)-) 
Y 272 

1 
--(-fi(65)*iJi?163)+J6(61)) d 5  

J34  

1 
= ( - f i l 6 -  5)FiJT?l6- 3)+46(6- 1)) 

The study of the spectrum of the invariant operators and their associated bases 
deserves further study. We have indicated the relevance of one particular basis to the 
asymmetrical top and there are undoubtedly other important applications of other 
bases. 

11. Symmetrization of the Gel’fand states 

The Gel’fand states that arise in the canonical subgroup basis UN 2 UN-1 3 .  . .I U1 
have been studied by many investigators (cf b u c k  1970). More recently interest has 
been shown in the use of Gel’fand states in atomic (Patera 1972, Harter 1973, Drake et 
a1 1975) and molecular (Paldus 1974,1975) physics. These applications have all sought 
to capitalize on the existence of simple algorithms for constructing basis states and 
computing matrix elements. 

In many physical problems there exists exact, or approximate invariance with 
respect to certain groups that is not apparent in the canonical formulation of the 
problems. Thus in many cases it is desirable to transform the canonical basis into some 
physically relevant non-canonical basis. This requires the symmetry adaption of the 
Gel’fand states. One solution to the problem of symmetry adaption is to demand that 
the Gel’fand states diagonalize a complete set of commuting operators associated with 
the non-canonical group structure. We sketch such a method. 
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The generators Eij (i, j = 1,2 ,  . . . , N> of UN satisfy the commutation relations 

Ekll = 8jkEiI - 81IEkj. (50) 
The generators of the non-canonical angular momentum subgroup SO3 may be 
expressed in terms of the generators of U N  by writing (Patera 1972) 

The Casimir invariant J 2  of SO3 can be expressed in terms of a quadratic in the 
generators of U N  via ( 5  1) and diagonalized by the Gel’fand states that have well defined 
transformation properties under SO3. The SO3 tensor operators c’ may be realized as 
polynomials in J, and J, via § 3 and thence as polynomials in the generators of UN via 
(5 1). As a result every invariant operator XG associated with a subgroup G of SO3 may 
be realized as a polynomial in the generators of UN. Diagonalization of the operator X ,  
will then yield linear combinations of the Gel’fand basis states that have well defined 
transformation properties with respect to both SO3 and G. 

The resulting eigenfunctions will be simultaneous eigenfunctions of { J 2 ,  X,} and 
may be designated by IaJATy) where a is a label introduced to distinguish repeated SO3 
irreps, J is the appropriate irrep of SO3, A the associated eigenvalue of XG with r being 
an appropriate irrep of G and y labelling the components of r. The labels a could come 
from invariant operators associated with the integrity basis for U N  3 SO3 while the y 
labels could be replaced by those of a subgroup of G. 

12. Relationship to coupling and transformation coefficients 

The diagonalization of one of the operators XG in the canonical SO3 3 SOz angular 
momentum IJM) basis yields a set of eigenvalues [A]  that may be used to complete the 
labelling of the basis states for the non-canonical SO3 2 G scheme. A typical non- 
canonical basis state that simultaneously diagonalizes J2  and XG may be represented by 
the ket vector ( J A r y )  where A is an eigenvalue of XG associated with the irrep r of G 
and A labels the components of r. 

Th canonical ( J M )  basis is related by a unitary transformation to the non-canonical 
IJA Ty) basis such that 

IJM) = 1 l JArY)(JArYlJM) .  (53)  
A TY 

The coefficients of the expansion, (JMIJA Ty), are the transformation coefficients that 
transform one basisinto another (cf Butler 1975). Here these coefficients are in essence 
the elements of the unitary matrix that diagonalizes the operator XG in the IJM) basis. 



Stute labelling problem for subgroups of SO3 1065 

In practice the transformation coefficients are seldom amenabje to an analytic 
formulation and must either be calculated recursively or obtained by diagonalization of 
suitable operators. In most cases it is difficult to avoid numerical calculation. The 
inherent difficulties in calculating transformation coefficients are readily seen in the case 
of the asymmetrical top (Patera and Winternitz 1973). Here the transformation 
coefficients involve the transformation from the canonical SO3 3 SO2 basis to the 
non-canonical SO3 3 D2 basis and even for angular momenta J = 2 it is no longer 
possible to generally express all of the relevant transformation coefficients as pure 
rational or pure irrational numbers. 

The transformation coefficients can be related to the coupling coefficients by 
considering the coupling of two kets in the non-canonical basis 

The coupling coefficient can be factorized using Racahs' lemma (Racah 1949) and the 
kets on both sides expanded into the canonical basis using transformation coefficients. 
The properties of coupling coefficients (Butler 1975) may then be used to finally yield 
the relations. 

= C (JMIJ~~y)(J~~~lJi~,r,; JjA,rj)(arylr iyi;  r,'~,). (55) 
ATya 

This expression involves coupling and transformation coefficients. A restricted form of 
the above equation has been used by Golding in the calculation of coupling coefficients 
for the octahedral (Golding 1971) and icosahedral (Golding 1973) group. 

It is important to note that (55) involves not only branching multiplicities A but also 
product multiplicities a. These latter multiplicities arise in the application of the Racah 
factorization lemma to the coupling coefficient in (54). Application of the orthogonality 
property of coupling coefficients in (55) leads to the result (cf Konig and Kremer 1973, 
Harnung 1973) 

LI 

The two multiplicity problems are now clearly separated. The operators XG give a 
systematic resolution of the branching multiplicities but not of the product multiplicities 
which must be independently considered. The angular momentum coupling coeffi- 
cients on the left-hand side of (56) are known and the associated transformation 
coefficients follow from diagonalization of X ,  in a IJM) basis. Thus the systematic 
resolution of the branching multiplicities leads to a complete determination of the 
left-hand side of (56). Hence the right-hand side of (56) is completely determined apart 
from the resolution of the product multiplicities. Clearly we have here a method of 
computing coupling coefficients. Different resolutions of the branching multiplicity 
result in different coupling coefficients. The actual choice of resolution must be decided 
on physical or computational considerations. It is apparent that some resolutions will 
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lead to coupling coefficients of greater complexity than others as seen in the case of the 
asymmetrical top. 

13. Extension to other p u p s  

So far our attention has been restricted to the pure rotation subgroups of SO3 and we 
exploited the close similarity between the transformation properties of states and tensor 
operators under pure rotations. Thus our results cover only eleven of the thirty-two 
crystallographic point groups. The remaining point groups involve inversion and 
reflections as well as pure finite rotations. We note reflections may be resolved into the 
product of a pure rotation followed by an inversion. Ten of the remaining point groups 
are isomorphic to pure rotation groups and the others can all be written as a direct 
product of a pure rotation group with the inversion group C,. 

The angular momentum states are not necessarily invariant with respect to inver- 
sions since 

The angular momentum operators J,, J, all commute with I and hence the tensor 
operators used here are invariant with respect to inversions. This means that a group G‘ 
isomorphic to a given pure rotation subgroup G have the same invariant labelling 
operator XG. The linear combinations of IJM) states that simultaneously diagonalize 
{J2,  XG}  will be the same for both groups but their transformation properties under the 
two groups may be different. The basis functions that are even with respect to inversion 
have the same transformation properties under G and G’. The odd basis functions will 
have the same transformation properties under G as the even basis functions. Under 
G’ the odd and even basis functions will have different transformation properties and 
hence may be associated with different irreps of G‘. 

The remaining direct product groups G X C, can be handled in a similar manner by 
enlarging the set of commuting operators to {J’, I, XG}.  

14. Conclusions 

The introduction of integrity bases and the subsequent development of invariant 
operators for a non-canonical groupsubgroup chain provides a systematic method for 
constructing complete sets of commuting operators. The eigenfunctions that simul- 
taneously diagonalize a given set yield a fully labelled orthonormal basis for the 
representations associated with the groupsubgroup chain. This provides a systematic 
and complete resolution of the branching multiplicity. It is important to note that the 
resolution obtained depends on the embeddings of the subgroups in the group chain and 
on the particular choice of polynomial invariant X,. 

We note that both product and branching multiplicities occur in coupling coeffi- 
cients whereas the recoupling coefficients contain only product multiplicities. This 
would seem to add emphasis to the desirability of first calculating recoupling coefficients 
from first principles making an essentially ad hoc separation of the product multi- 
plicities which are usually of no physical significance and then computing the coupling 
coefficients choosing the branching multiplicity resolution in the physically, or compu- 
tationally, most appropriate manner (cf Butler and Wybourne 1976b). 
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It would seem to be imperative in preparing tables of coupling coefficients to specify 
the relevant group embeddings, the product multiplicity resolution and the choice of 
branching multiplicity resolution very carefully. It is possible for identical group chains 
to be associated with quite different sets of coupling coefficients. 

The transformation coefficients involve only the branching multiplicity resolution 
and again this needs to be clearly specified in their tabulation. 

The methods we have outlined for the special case of the finite subgroups of SO3 can 
be extended to other groups and emphasize the central importance of coupling 
coefficients. 

The construction of complete sets of polynomial invariants for group chains is likely 
to receive considerable application in spectral distribution methods where the 
moments (H”)‘^’ of a Hamiltonian H a r e  averaged over the states of a given irrep [A] of 
a group G (cf Hecht 1973). In these cases only the scalar parts of Hp survive and hence 
the moments can be expressed in terms of polynomial invariants. Specific applications 
to nuclear problems have been outlined by Quesne (1976, private communication) 
while the method of moments has been applied to the Jahn-Teller effect by Wagner 
(1970) but without reference to polynomial invariants. 
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